Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Min Zhao, Tian-Xing Wu* and Qing-Sen Yu

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail:
zsmpaper@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.044$
$w R$ factor $=0.128$
Data-to-parameter ratio $=15.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-pyridine-2,5-dicarboxylato- $1 \kappa^{2} N, O^{2}: 2 \kappa O^{5}$;$1 \kappa O^{5}: 2 \kappa^{2} N, O^{2}$-bis[aqua($2,2^{\prime}$-bipyridine- $\kappa^{2} N, N^{\prime}$)cadmium(II)] dihydrate

In the crystal structure of the title cadmium(II) complex, $\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the pyridine-2,5dicarboxylate (pydc) dianions bridge the $\mathrm{Cd}^{\text {II }}$ ions to form a centrosymmetric dimeric complex. Each $\mathrm{Cd}^{\mathrm{II}}$ ion has a distorted octahedral coordination geometry.

Comment

As a multidentate ligand, pyridinedicarboxylate (pydc) has been widely used to prepare multinuclear metal complexes (Gao et al., 2005). We recently prepared the title $\mathrm{Cd}^{\mathrm{II}}$ complex, (I), and the present X-ray structure determination shows this to be a dimeric complex.

The molecular structure of (I) is shown in Fig. 1. Each $\mathrm{Cd}^{\mathrm{II}}$ ion is surrounded by one coordinated water molecule, one $2,2^{\prime}$-bipyridine ligand and two pydc dianions, to give a distorted octahedral geometry. Two pydc dianions bridge two

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) $1-x$, $1-y, 2-z]$. Dashed lines represent hydrogen bonds.
$\mathrm{Cd}^{\text {II }}$ ions to form a centrosymmetric dimeric complex. The $\mathrm{Cd}-\mathrm{O}$ distances are comparable with the values of $2.297(3) \AA$ in $\left[\mathrm{Cd}(\mathrm{Hpydc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ and $2.330(2) \AA$ in $\left[\mathrm{Cd}(\mathrm{Hpydc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Gao et al., 2005).

Extensive hydrogen bonding occurs in (I) (Table 2), which consolidates the crystal structure.

Experimental

An ethanol solution $(10 \mathrm{ml})$ of 2, 2'-bipyridine ($0.031 \mathrm{~g}, 0.2 \mathrm{mmol}$) was mixed with an aqueous solution (5 ml) containing $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ $(0.046 \mathrm{~g}, 0.2 \mathrm{mmol})$ and H_{2} pydc ($0.067 \mathrm{~g}, 0.4 \mathrm{mmol}$). The mixture was refluxed for 5 h and then filtered. After three weeks, colourless single crystals of (I) were obtained from the filtrate.

Crystal data

$\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}{ }^{-}\right.$
$\left(\mathrm{H}_{2} \mathrm{O}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=939.44$
Triclinic, $P \overline{1}$
$a=7.4046(9) \AA$
$b=9.6272(11) \AA$
$c=12.5769(17) \AA$
$\alpha=81.968(5)^{\circ}$
$\beta=74.517(4)^{\circ}$
$\gamma=89.581(7)^{\circ}$
$V=855.16(18) \AA^{\circ}$

Data collection

Rigaku R-AXIS RAPID
diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\min }=0.820, T_{\max }=0.890$
7511 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.128$
$S=1.21$
3816 reflections
244 parameters
H -atom parameters constrained

$Z=1$

$D_{x}=1.824 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6217 reflections
$\theta=2.5-27.4^{\circ}$
$\mu=1.32 \mathrm{~mm}^{-1}$
$T=295$ (1) K
Block, colourless
$0.24 \times 0.12 \times 0.09 \mathrm{~mm}$

3816 independent reflections 3605 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-12 \rightarrow 12$
$l=-16 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0374 P)^{2}\right. \\
& \quad+3.5499 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=1.97 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.83 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters (\AA).

$\mathrm{Cd} 1-\mathrm{O} 1$	$2.258(4)$	$\mathrm{Cd} 1-\mathrm{N} 1$	$2.331(4)$
$\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.289(4)$	$\mathrm{Cd} 1-\mathrm{N} 2$	$2.367(5)$
$\mathrm{Cd} 1-\mathrm{O} 5$	$2.227(4)$	$\mathrm{Cd} 1-\mathrm{N} 3$	$2.392(4)$
Symmetry code: (i) $-x+1,-y+1,-z+2$			

Symmetry code: (i) $-x+1,-y+1,-z+2$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H51 \cdots O1 $1^{\text {ii }}$	0.90	2.48	3.149 (6)	131
$\mathrm{O} 5-\mathrm{H} 51 \cdots \mathrm{O} 2^{\text {ii }}$	0.90	1.82	2.649 (6)	152
O5-H52 . O 6	0.92	1.85	2.741 (7)	165
$\mathrm{O} 6-\mathrm{H} 61 \cdots \mathrm{O} 3^{\text {iii }}$	0.86	2.26	3.118 (6)	171
O6-H62 \cdots O $4^{\text {iv }}$	0.86	2.18	2.784 (7)	127

Symmetry codes: (ii) $x-1, y, z$; (iii) $-x,-y+1,-z+2$; (iv) $x, y+1, z$.
Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$. Aromatic H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and were included in the final cycles of refinement in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak in the final difference Fourier map is $1.1 \AA$ from atom Cd1.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gao, H.-L., Cheng, C., Ding, B., Shi, W., Song, H.-B., Cheng, P., Liao, D.-Z., Yan, S.-P. \& Jiang, Z.-H. (2005). J. Mol. Struct. 738, 105-111.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 900 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

