Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shu-Min Zhao, Tian-Xing Wu* and Qing-Sen Yu

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: zsmpaper@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.008 \text{ Å}$ R factor = 0.044 wR factor = 0.128 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di- μ -pyridine-2,5-dicarboxylato-1 $\kappa^2 N$, O^2 :2 κO^5 ;-1 κO^5 :2 $\kappa^2 N$, O^2 -bis[aqua(2,2'-bipyridine- $\kappa^2 N$,N')cadmium(II)] dihydrate

In the crystal structure of the title cadmium(II) complex, $[Cd_2(C_7H_3NO_4)_2(C_{10}H_8N_2)_2(H_2O)_2]\cdot 2H_2O$, the pyridine-2,5-dicarboxylate (pydc) dianions bridge the Cd^{II} ions to form a centrosymmetric dimeric complex. Each Cd^{II} ion has a distorted octahedral coordination geometry.

Received 3 October 2005 Accepted 26 October 2005 Online 5 November 2005

Comment

As a multidentate ligand, pyridinedicarboxylate (pydc) has been widely used to prepare multinuclear metal complexes (Gao *et al.*, 2005). We recently prepared the title Cd^{II} complex, (I), and the present X-ray structure determination shows this to be a dimeric complex.

The molecular structure of (I) is shown in Fig. 1. Each Cd^{II} ion is surrounded by one coordinated water molecule, one 2,2'-bipyridine ligand and two pydc dianions, to give a distorted octahedral geometry. Two pydc dianions bridge two

Figure 1

The molecular structure of (I), with 50% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, 1 - y, 2 - z]. Dashed lines represent hydrogen bonds.

 \odot 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Cd^{II} ions to form a centrosymmetric dimeric complex. The Cd–O distances are comparable with the values of 2.297 (3) Å in $[Cd(Hpydc)_2(H_2O)_2]$ and 2.330 (2) Å in $[Cd(Hpydc)_2(H_2O)_2]$ (Gao *et al.*, 2005).

Extensive hydrogen bonding occurs in (I) (Table 2), which consolidates the crystal structure.

Experimental

An ethanol solution (10 ml) of 2,2'-bipyridine (0.031 g, 0.2 mmol) was mixed with an aqueous solution (5 ml) containing $CdCl_2 \cdot 2.5H_2O$ (0.046 g, 0.2 mmol) and H₂pydc (0.067 g, 0.4 mmol). The mixture was refluxed for 5 h and then filtered. After three weeks, colourless single crystals of (I) were obtained from the filtrate.

Z = 1

 $D_x = 1.824 \text{ Mg m}^{-3}$

Cell parameters from 6217

Mo $K\alpha$ radiation

reflections

 $\theta = 2.5 - 27.4^{\circ}$ $\mu = 1.32 \text{ mm}^{-1}$

T = 295 (1) K

 $R_{\rm int}=0.051$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -9 \rightarrow 9$

 $k=-12\rightarrow 12$

 $l = -16 \rightarrow 15$

Block, colourless

 $0.24 \times 0.12 \times 0.09 \text{ mm}$

3816 independent reflections

3605 reflections with $I > 2\sigma(I)$

Crystal data

 $\begin{bmatrix} Cd_2(C_7H_3NO_4)_2(C_{10}H_8N_2)_{2^-} \\ (H_2O)_2]\cdot 2H_2O \\ M_r = 939.44 \\ Triclinic, P\overline{1} \\ a = 7.4046 (9) Å \\ b = 9.6272 (11) Å \\ c = 12.5769 (17) Å \\ \alpha = 81.988 (5)^{\circ} \\ \beta = 74.517 (4)^{\circ} \\ \gamma = 89.581 (7)^{\circ} \\ V = 855.16 (18) Å^3 \end{bmatrix}$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.820, T_{max} = 0.890$ 7511 measured reflections

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0374P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.044 & + 3.5499P] \\ wR(F^2) = 0.128 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.21 & (\Delta/\sigma)_{max} < 0.001 \\ 3816 \ reflections & \Delta\rho_{max} = 1.97 \ e \ {\rm \AA}^{-3} \\ 244 \ parameters & \Delta\rho_{min} = -0.83 \ e \ {\rm \AA}^{-3} \end{array}$

Table 1

Selected geometric parameters (Å).

Cd1-O1	2.258 (4)	Cd1-N1	2.331 (4)
Cd1-O3 ⁱ	2.289 (4)	Cd1-N2	2.367 (5)
Cd1-O5	2.227 (4)	Cd1-N3	2.392 (4)

Symmetry code: (i) -x + 1, -y + 1, -z + 2.

Table 2			
Hydrogen-bond	geometry	(Å, '	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H51\cdots O1^{ii}$	0.90	2.48	3.149 (6)	131
$O5-H51\cdots O2^{ii}$	0.90	1.82	2.649 (6)	152
O5−H52···O6	0.92	1.85	2.741 (7)	165
O6−H61···O3 ⁱⁱⁱ	0.86	2.26	3.118 (6)	171
$O6-H62\cdots O4^{iv}$	0.86	2.18	2.784 (7)	127

Symmetry codes: (ii) x - 1, y, z; (iii) -x, -y + 1, -z + 2; (iv) x, y + 1, z.

Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{iso}(H) = 1.2U_{eq}(O)$. Aromatic H atoms were placed in calculated positions, with C-H = 0.93 Å, and were included in the final cycles of refinement in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$. The highest peak in the final difference Fourier map is 1.1 Å from atom Cd1.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Gao, H.-L., Cheng, C., Ding, B., Shi, W., Song, H.-B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2005). J. Mol. Struct. 738, 105–111.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 900 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.